Ensemble forecasting of coronal mass ejections using the WSAENLIL with CONED Model

نویسندگان

  • D. Emmons
  • A. Acebal
  • A. Pulkkinen
  • A. Taktakishvili
  • P. MacNeice
  • D. Odstrcil
چکیده

[1] The combination of the Wang-Sheeley-Arge (WSA) coronal model, ENLIL heliospherical model version 2.7, and CONED Model version 1.3 (WSA-ENLIL with CONED Model) was employed to form ensemble forecasts for 15 halo coronal mass ejections (halo CMEs). The input parameter distributions were formed from 100 sets of CME cone parameters derived from the CONED Model. The CONED Model used image processing along with the bootstrap approach to automatically calculate cone parameter distributions from SOHO/LASCO imagery based on techniques described by Pulkkinen et al. (2010). The input parameter distributions were used as input to WSA-ENLIL to calculate the temporal evolution of the CMEs, which were analyzed to determine the propagation times to the L1 Lagrangian point and the maximum Kp indices due to the impact of the CMEs on the Earth’s magnetosphere. The Newell et al. (2007) Kp index formula was employed to calculate the maximum Kp indices based on the predicted solar wind parameters near Earth assuming two magnetic field orientations: a completely southward magnetic field and a uniformly distributed clock-angle in the Newell et al. (2007) Kp index formula. The forecasts for 5 of the 15 events had accuracy such that the actual propagation time was within the ensemble average plus or minus one standard deviation. Using the completely southward magnetic field assumption, 10 of the 15 events contained the actual maximum Kp index within the range of the ensemble forecast, compared to 9 of the 15 events when using a uniformly distributed clock angle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solar Mini-Dimming Kinematics and Their Positive Correlations with Coronal Mass Ejections and Prominence

Solar mini-dimmings can be detect in the Extreme Ultra-Violet coronal eruptions. Here, sequences of 171_A images taken by Solar Dynamic Observatory/Atmospheric Imaging Assembaly on 13 June 2010 are used. In this special day, both of coronal mass ejection and prominence were observed. The average velocities and accelerations of 500 mini-dimmings which were detected using on feature based classif...

متن کامل

VCMass: A Framework for Verification of Coronal Mass Ejection Ensemble Simulations

Supporting the growing field of space weather forecasting, we propose a framework to analyze ensemble simulations of coronal mass ejections. As the current simulation technique requires manual input, uncertainty is introduced into the simulation pipeline leading to inaccurate predictions. Using our system, the analyst can compare ensemble members against ground truth data (arrival time and geoe...

متن کامل

Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation

We describe a method with which to measure the magnetic field orientation of coronal mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles, Gaussian-shaped with a single polarity or N-shaped with polarity reversals, are produced by a radio source occulted by a moving flux rope, depending on its orientation. These curves are consistent with Helios observations, providing evide...

متن کامل

Initiation of Coronal Mass Ejections in a Global Evolution Model

Loss of equilibrium of magnetic flux ropes is a leading candidate for the origin of solar coronal mass ejections (CMEs). The aim of this paper is to explore to what extent this mechanism can account for the initiation of CMEs in the global context. A simplified MHD model for the global coronal magnetic field evolution in response to flux emergence and shearing by large-scale surface motions is ...

متن کامل

Determining the Azimuthal Properties of Coronal Mass Ejections from Multi-spacecraft Remote-sensing Observations with Stereo Secchi

We discuss how simultaneous observations by multiple heliospheric imagers can provide some important information about the azimuthal properties of Coronal Mass Ejections (CMEs) in the heliosphere. We propose two simple models of CME geometry that can be used to derive information about the azimuthal deflection and the azimuthal expansion of CMEs from SECCHI/HI observations. We apply these two m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015